Multi-Task Feature Learning Via Efficient l2, 1-Norm Minimization

نویسندگان

  • Jun Liu
  • Shuiwang Ji
  • Jieping Ye
چکیده

The problem of joint feature selection across a group of related tasks has applications in many areas including biomedical informatics and computer vision. We consider the 2,1-norm regularized regression model for joint feature selection from multiple tasks, which can be derived in the probabilistic framework by assuming a suitable prior from the exponential family. One appealing feature of the 2,1-norm regularization is that it encourages multiple predictors to share similar sparsity patterns. However, the resulting optimization problem is challenging to solve due to the non-smoothness of the 2,1-norm regularization. In this paper, we propose to accelerate the computation by reformulating it as two equivalent smooth convex optimization problems which are then solved via the Nesterov’s method—an optimal first-order black-box method for smooth convex optimization. A key building block in solving the reformulations is the Euclidean projection. We show that the Euclidean projection for the first reformulation can be analytically computed, while the Euclidean projection for the second one can be computed in linear time. Empirical evaluations on several data sets verify the efficiency of the proposed algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exclusive Sparsity Norm Minimization with Random Groups via Cone Projection

Many practical applications such as gene expression analysis, multi-task learning, image recognition, signal processing, and medical data analysis pursue a sparse solution for the feature selection purpose and particularly favor the nonzeros evenly distributed in different groups. The exclusive sparsity norm has been widely used to serve to this purpose. However, it still lacks systematical stu...

متن کامل

l2, 1 Regularized correntropy for robust feature selection

In this paper, we study the problem of robust feature extraction based on l2,1 regularized correntropy in both theoretical and algorithmic manner. In theoretical part, we point out that an l2,1-norm minimization can be justified from the viewpoint of half-quadratic (HQ) optimization, which facilitates convergence study and algorithmic development. In particular, a general formulation is accordi...

متن کامل

Multi-Task Feature Learning Via Efficient 2,1-Norm Minimization

The problem of joint feature selection across a group of related tasks has applications in many areas including biomedical informatics and computer vision. We consider the 2,1-norm regularized regression model for joint feature selection from multiple tasks, which can be derived in the probabilistic framework by assuming a suitable prior from the exponential family. One appealing feature of the...

متن کامل

Joint adaptive loss and l2/l0-norm minimization for unsupervised feature selection

Unsupervised feature selection is a useful tool for reducing the complexity and improving the generalization performance of data mining tasks. In this paper, we propose an Adaptive Unsupervised Feature Selection (AUFS) algorithm with explicit l2/l0-norm minimization. We use a joint adaptive loss for data fitting and a l2/l0 minimization for feature selection. We solve the optimization problem w...

متن کامل

Inexact Accelerated Proximal Gradient Algorithms For Matrix l2,1-Norm Minimization Problem in Multi-Task Feature Learning

In this paper, we extend the implementable APG method to solve the matrix l2,1-norm minimization problem arising in multi-task feature learning. We investigate that the resulting inner subproblem has closed-form solution which can be easily determined by taking the problem’s favorable structures. Under suitable conditions, we can establish a comprehensive convergence result for the proposed met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009